NumPy 高级索引
NumPy 比一般的 Python 序列提供更多的索引方式。
除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。
整数数组索引
以下实例获取数组中 (0,0),(1,1) 和 (2,0) 位置处的元素。
实例
输出结果为:
[1 4 5]
以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。
实例
输出结果为:
我们的数组是: [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] 这个数组的四个角元素是: [[ 0 2] [ 9 11]]
返回的结果是包含每个角元素的 ndarray 对象。
可以借助切片 : 或 … 与索引数组组合。如下面例子:
实例
输出结果为:
[[5 6] [8 9]] [[5 6] [8 9]] [[2 3] [5 6] [8 9]]
布尔索引
我们可以通过一个布尔数组来索引目标数组。
布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。
以下实例获取大于 5 的元素:
实例
输出结果为:
我们的数组是: [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] 大于 5 的元素是: [ 6 7 8 9 10 11]
以下实例使用了 ~(取补运算符)来过滤 NaN。
实例
输出结果为:
[ 1. 2. 3. 4. 5.]
以下实例演示如何从数组中过滤掉非复数元素。
实例
输出如下:
[2.0+6.j 3.5+5.j]
花式索引
花式索引指的是利用整数数组进行索引。
花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。
对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行。
花式索引跟切片不一样,它总是将数据复制到新数组中。
一维数组
一维数组只有一个轴 axis = 0,所以一维数组就在 axis = 0 这个轴上取值:
实例
x = np.arange(9)
print(x)
# 一维数组读取指定下标对应的元素
print("-------读取下标对应的元素-------")
x2 = x[[0, 6]] # 使用花式索引
print(x2)
print(x2[0])
print(x2[1])
输出结果为:
[0 1 2 3 4 5 6 7 8] -------读取下标对应的元素------- [0 6] 0 6
二维数组
1、传入顺序索引数组
实例
print (x[[4,2,1,7]]) 输出下表为 4, 2, 1, 7 对应的行,输出结果为:
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15] [16 17 18 19] [20 21 22 23] [24 25 26 27] [28 29 30 31]] -------读取下标对应的行------- [[16 17 18 19] [ 8 9 10 11] [ 4 5 6 7] [28 29 30 31]]
2、传入倒序索引数组
实例
输出结果为:
[[16 17 18 19] [24 25 26 27] [28 29 30 31] [ 4 5 6 7]]
3、传入多个索引数组(要使用 np.ix_)
np.ix_ 函数就是输入两个数组,产生笛卡尔积的映射关系。
笛卡尔乘积是指在数学中,两个集合 X 和 Y 的笛卡尔积(Cartesian product),又称直积,表示为 X×Y,第一个对象是X的成员而第二个对象是 Y 的所有可能有序对的其中一个成员。
例如 A={a,b}, B={0,1,2},则:
A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)} B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}
实例
输出结果为:
[[ 4 7 5 6] [20 23 21 22] [28 31 29 30] [ 8 11 9 10]]