Pandas 数据结构 - Series
Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
Series 由索引(index)和列组成,函数如下:
pandas.Series( data, index, dtype, name, copy)
参数说明:
-
data:一组数据(ndarray 类型)。
-
index:数据索引标签,如果不指定,默认从 0 开始。
-
dtype:数据类型,默认会自己判断。
-
name:设置名称。
-
copy:拷贝数据,默认为 False。
创建一个简单的 Series 实例:
实例
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
输出结果如下:
从上图可知,如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据:
实例
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
输出结果如下:
2
我们可以指定索引值,如下实例:
实例
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
输出结果如下:
根据索引值读取数据:
实例
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
输出结果如下:
Runoob
我们也可以使用 key/value 对象,类似字典来创建 Series:
实例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
输出结果如下:
从上图可知,字典的 key 变成了索引值。
如果我们只需要字典中的一部分数据,只需要指定需要数据的索引即可,如下实例:
实例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
输出结果如下:
设置 Series 名称参数:
实例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)